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Fig. 1. Overview. We introduce Shoot-Bounce-3D (SB3D): a method to decompose temporal light transport in a scene from a single-view, single-shot
capture, enabling recovery of 3D geometry, despite specular surfaces and occlusions. (a) A single-photon lidar shoots light into the scene at multiple points
at once, referred to as multiplexed illumination. Some light reflects directly back to the sensor, while other light bounces multiple times first. The lidar
captures histograms containing photon intensity over time — known as transients. The multiplexed light mixes together in the transients. (b) We create the
first-of-its-kind simulated dataset of multiplexed lidar transients from ~100k scenes and use it to train a model to demultiplex two-bounce light. (c) Our model
enables single-shot 3D, including both dense metric depth and occluded geometry, in the presence of specular surfaces.

3D scene reconstruction from a single measurement is challenging, especially
in the presence of occluded regions and specular materials, such as mirrors.
We address these challenges by leveraging single-photon lidars. These lidars
estimate depth from light that is emitted into the scene and reflected directly
back to the sensor. However, they can also measure light that bounces
multiple times in the scene before reaching the sensor. This multi-bounce

“Both authors contributed equally to this research.

Authors’ Contact Information: Tzofi Klinghoffer, tzofi@mit.edu, Massachusetts In-
stitute of Technology, Cambridge, Massachusetts, USA; Siddharth Somasundaram,
sidsoma@mit.edu, Massachusetts Institute of Technology, Cambridge, Massachusetts,
USA; Xiaoyu Xiang, Meta, Menlo Park, California, USA, xiangxiaoyu@meta.com;
Yuchen Fan, Meta, Menlo Park, California, USA, ycfan@meta.com; Christian Richardt,
Meta, Zurich, Switzerland, crichardt@meta.com; Akshat Dave, ad74@mit.edu, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, USA; Ramesh Raskar,
raskar@mit.edu, Massachusetts Institute of Technology, Cambridge, Massachusetts,
USA; Rakesh Ranjan, Meta, Menlo Park, California, USA, rakeshr@meta.com.

This work is licensed under a Creative Commons Attribution 4.0 International License.
SA Conference Papers °25, Hong Kong, Hong Kong

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2137-3/2025/12

https://doi.org/10.1145/3757377.3763945

light contains additional information that can be used to recover dense
depth, occluded geometry, and material properties. Prior work with single-
photon lidar, however, has only demonstrated these use cases when a laser
sequentially illuminates one scene point at a time. We instead focus on
the more practical - and challenging — scenario of illuminating multiple
scene points simultaneously. The complexity of light transport due to the
combined effects of multiplexed illumination, two-bounce light, shadows,
and specular reflections is challenging to invert analytically. Instead, we
propose a data-driven method to invert light transport in single-photon lidar.
To enable this approach, we create the first large-scale simulated dataset
of ~100k lidar transients for indoor scenes. We use this dataset to learn a
prior on complex light transport, enabling measured two-bounce light to be
decomposed into the constituent contributions from each laser spot. Finally,
we experimentally demonstrate how this decomposed light can be used
to infer 3D geometry in scenes with occlusions and mirrors from a single
measurement. Our code and dataset are released on our project webpage.
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1 Introduction

Single-shot 3D scene understanding is a long-standing problem in
computer vision and graphics — critical to applications ranging from
autonomous vehicles to extended reality. However, recovering 3D in-
formation from a single RGB image is ambiguous: lack of multiview
correspondences makes metric depth estimation ill-posed, occlu-
sions must be hallucinated, and specular surfaces can be mistaken
as holes or “portals” in the scene. We present a machine learning
(ML) approach to leverage single-photon lidar for single-shot 3D
reconstruction in scenes with occlusions and specular surfaces.
Single-photon lidars — composed of a pulsed laser and a single-
photon avalanche diode (SPAD) sensor — shoot light pulses into
the scene and measure the time light takes to return to the sensor.
Similar to traditional lidar, time taken by the light directly reflecting
back from the scene - called time of flight (ToF) — encodes the depth
of illuminated points. However, single-photon lidars can also capture
the time taken by light that indirectly reflects — or “bounces” — to
other parts of the scene before hitting the sensor. In particular, single-
photon lidars measure time-resolved histograms, called transients,
in which multiple bounces of light appear as multiple peaks (Fig. 1a).
In our work, we focus on two-bounce light: light that has reflected
up to two times in the scene. Prior works use two-bounce light in
lidar transients to recover dense depth [Henley et al. 2022], occluded
geometry [Klinghoffer et al. 2024], and material properties [Henley
et al. 2023]. However, these works rely on lidars that scan the laser
sequentially over the scene, one point at a time. Instead, we consider
multiplexed illumination — meaning the scene is illuminated at
multiple points simultaneously. As a result, measured transients
have multiple peaks corresponding to multi-bounce light from all
illuminated points - causing prior work to fail. Our investigation of
multiplexed illumination is motivated by its use on high-resolution
SPADs [Henderson et al. 2019] found on consumer devices, such as
mobile phones, tablets, and headsets [4sense 2021; Allain 2022].
Extracting 3D information from transients with multiplexed illu-
mination is challenging due to the ambiguity in mapping peaks in
the transient to corresponding illumination points. In this work, we
demonstrate the potential of ML to address this challenge by demul-
tiplexing captured transients using data priors (Fig. 1b). While ML’s
application to RGB images has transformed the field of computer
vision, single-photon lidar has only recently emerged as a common
sensor on consumer devices — meaning large-scale datasets and
ML approaches do not yet exist. Yet, single-photon lidars capture
a rich set of features that RGB cameras cannot. We posit that by
harnessing these features, ML could enable a new set of abilities in
computer vision. Our work is intended as an initial step towards this
vision by (1) building the first-of-its-kind simulated multi-bounce
transient dataset on ~100k scenes, and (2) applying it to train our
proposed approach, Shoot-Bounce-3D (SB3D), that recovers metric
3D reconstructions, including in occluded areas and scenes with
specular surfaces — from a single-view, single-shot capture (Fig. 1c).
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SB3D consists of three steps. First, we estimate the two-bounce
time of flight (ToF) of each illumination point. To do this, we train a
model to estimate dense depth, which can be directly used to com-
pute the two-bounce ToF for each illumination point. However, not
all scene points are illuminated by each illumination point. Scene
points that are not illuminated are in shadow; thus, we next train
our model to estimate shadow maps for each illumination point.
Our model uses the earlier predicted two-bounce ToF for this step.
Finally, once both two-bounce ToF and shadows have been predicted
for each illumination point, we train an existing method for neural
reconstruction to learn 3D scene geometry, including in occluded
regions. Because our dataset contains specular surfaces, such as mir-
rors and windows, our method is robust to these everyday objects.
Interestingly, we find that the features learned to demultiplex two-
bounce ToF in the first step can also be used to accurately predict
specular segmentations. We posit this is a sign that the features may
be a generalizable representation for single-photon lidar. Dataset
and code will be released upon acceptance.

1. Data-Driven Demultiplexing: From a single-photon lidar mea-
surement of a scene illuminated at multiple points at once, we
propose a data-driven method to decompose the two-bounce signal,
enabling separation of two-bounce time of flight and shadows.

2. Occlusion-Aware 3D: We show that the demultiplexed two-
bounce ToF and shadows can be used for 3D reconstruction, enabling
occluded areas to be revealed, despite the presence of specularities.

3. Large-Scale Multi-Bounce Lidar Dataset: To enable the above
contributions, we introduce a dataset of ~100k simulated multi-
bounce transient measurements of indoor scenes. This dataset can
be used to drive future work in ML for single-photon lidar.

4. Generalizable Multi-Bounce Lidar Features: We find that our
demultiplexing model learns features that can be transferred to other
tasks, such as specular object segmentation, in simulation. This is a
step towards a generalizable multi-bounce transient representation.

Scope of this Work. While our work is motivated by the use of high-
resolution SPADs [Henderson et al. 2019; Kumagai et al. 2021] used
with multiplexed point illumination on consumer devices [4sense
2021; Allain 2022], we acknowledge that these sensors also introduce
a variety of practical challenges that are beyond the scope of this
work, such as cross talk, hot pixels, blooming, and dead time. Instead,
the purpose of our work is to (a) introduce a data-driven approach
to demultiplexing illumination in multi-bounce flash lidars, and (b)
show proof-of-concept results. We do not consider low-resolution
SPADs with diffuse illumination [AMS OSRAM 2023; Jungerman
et al. 2022]. We assume objects are purely specular or diffuse. While
high-resolution consumer SPADs continue to be developed, they are
not yet widely available off the shelf. As this technology continues
to mature, we expect our work to become increasingly relevant.

2 Related Work

3D from RGB. Recovering 3D information from a single RGB im-
age is ambiguous due to occluded geometry, specular surfaces, and
lack of correspondences. Recent foundation models for depth lever-
age large datasets, learning statistical correlations to address the
correspondence ambiguity [Bochkovskii et al. 2024; Guo et al. 2025;
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Fig. 2. Multi-Bounce Signals. Shoot-Bounce-3D leverages multi-bounce signals measured from single-photon lidar. Multi-bounce light encodes (a) dense
depth (from geometric constraints), (b) occluded geometry (from shadows), and (c) specular surfaces (from two- and three-bounce pairs), but existing
techniques assume a single scene point is illuminated at a time, scanning a laser over the scene. However, multi-bounce lidars on consumer devices instead use
(d) multiplexed illumination, meaning multiple points are illuminated at once — causing existing methods to fail due to (1) lack of correspondence between
two-bounce peaks and illumination points, and (2) mixing of signals from (a), (b), and (c). To resolve these ambiguities, we employ a learning-based technique.

Ke et al. 2024; Yang et al. 2024a,b]. Diffusion models are widely used
to generate 3D from a single image, including occluded geometry.
Several methods generate novel views from an RGB image [Liu
et al. 2023; Qian et al. 2024; Sargent et al. 2024; Tewari et al. 2023;
Yu et al. 2024], though they often focus on objects and struggle in
scenes. Starting with Yu et al. [2021], many techniques incorporate
data priors in neural radiance fields (NeRF) [Mildenhall et al. 2021]
to learn 3D geometry from single or few images [Gao et al. 2024;
Xu et al. 2022]. However, NeRF often struggles with the challenge
of specular surface materials [Ma et al. 2024; Tiwary et al. 2023;
Verbin et al. 2024]. More broadly, specular surfaces cause ambigui-
ties, leading to “portals” being hallucinated. Work by He et al. [2021]
and Yang et al. [2019] tries to address this by learning mirror and
glass segmentation from RGB. Despite the progress, each of these
challenges remains an open problem; rather than relying on RGB,
we explore using single-photon lidar for scene-level 3D.

3D from Single-Photon Lidar. Single-photon lidars offer additional
cues for 3D understanding by capturing the distribution of light in-
tensity with travel time, called transients. Direct reflections encoded
in transients enable photon-efficient depth imaging [Gupta et al.
2019; Heide et al. 2018; Shin et al. 2016]. Recent works also explore
multi-view lidar measurements for neural 3D reconstruction [Behari
et al. 2024; Malik et al. 2024; Mu et al. 2024]. Three-bounce informa-
tion in transients has been extensively used for looking around cor-
ners using non-line-of-sight imaging [Ahn et al. 2019; Kirmani et al.
2009; Liu et al. 2019; Maeda et al. 2019; O’Toole et al. 2018; Pediredla
et al. 2019; Shen et al. 2024; Velten et al. 2012]. In this work, we focus
on two-bounce light — which has higher signal quality than three-
bounce light due to one less scattering attenuation. Prior works
leverage two-bounce light for dense depth from sparse illumination
[Henley et al. 2022], seeing behind occluders [Henley et al. 2020] and
specular surface mapping [Henley et al. 2023] — but require sequen-
tially illuminating the scene one point at a time. Single-photon lidars
on consumer devices have multiplexed illumination [4sense 2021]
— captured transients with mixed light contributions complicate 3D
understanding. Lin et al. [2024] explore specular surface mapping
with multiplexed illumination, but require multiple measurements
from different viewpoints. Somasundaram et al. [2023] explore oc-
cluded object imaging from multiplexed transients using an ana-
lytical approach. We leverage learning to demultiplex the captured
two-bounce transient to recover depth and occluded 3D geometry
in scenes with both diffuse and specular objects in a single shot.

Data-Driven Methods for Single-Photon Lidar. There is a growing
interest in applying deep learning methods to single-photon lidar
data. Prior works leverage direct bounce information in transients
for data-driven depth estimation [Lindell et al. 2018; Nishimura et al.
2020; Peng et al. 2020; Plosz et al. 2023; Sun et al. 2020; Yang et al.
2022; Zang et al. 2021], human pose [Ruget et al. 2022] and activity
recognition [Mora-Martin et al. 2024]. There are also works on non-
line-of-sight imaging from three-bounce transients that develop
simulated datasets [Chen et al. 2020] and novel convolutional neural
network-based [Chen et al. 2020; Cho et al. 2024; Mu et al. 2022; Sun
et al. 2024, 2020; Zhu et al. 2023], transformer-based [Li et al. 2023;
Yu et al. 2023] and motion-aware [Chopite et al. 2025; Isogawa et al.
2020; Ye et al. 2024] models. To the best of our knowledge, we are
the first to bring data-driven methods to two-bounce transients.

3 Single-Photon Lidar Image Formation Model

The most common measurement model for lidar only accounts for
direct illumination: emitted light that directly reflects back to the
sensor. Any other returning light is due to indirect illumination -
light that interacted with or originated from other parts of the scene
- and is treated as ambient noise. However, the secondary light paths
from indirect illumination encode useful scene properties, and can
be more informative than direct paths. In this section, we show how
complex indirect illumination captured by lidar serves as a useful
cue for 3D scene geometry, occlusions, and specularity. The ToF
dimension is particularly valuable for light transport decomposition
when multiple scene points are illuminated simultaneously.

3.1 Multi-Bounce Light Transport

Indirect illumination in single-photon lidar arises due to multi-
bounce light paths. Multi-bounce paths occur when the illuminated
scene point becomes a virtual light source. A virtual source acts as a
light source by reflecting incident light from another source towards
other scene points [Henley et al. 2022]. In this work, a virtual light
source can either have isotropic or directional radiance, depending
on whether the scene point is diffuse or specular, respectively.

An n-bounce path is a light path that consists of exactly n surface
reflections before returning to the camera. An example of a multi-
bounce path is shown in Fig. 2a. A scene point x; is illuminated
by the laser located at x; and imaged by the sensor located at x,.
The light that travels along the path x; — x; — x, is referred to as
1-bounce light. Similarly, light that travels along the pathx; — x; —
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Fig. 3. Method overview. Shoot-Bounce-3D (SB3D) performs 3D reconstruction from a single lidar measurement. The pipeline consists of three steps, each

with its own output. (a) First, from a measurement taken with multiplexed illumination (meaning multiple points in the scene are illuminated at once), SB3D
is trained to learn to predict depth — allowing the 2-bounce time-of-flight (ToF) for each illumination point to be separated using ray geometries. Because our

scenes contain specular objects, we find the ToF encoder used for this step also learns features that enable specular object segmentation. (b) The predicted
2-bounce ToF is unprojected into histograms and used with the lidar measurement to estimate shadows. Using the 2-bounce ToF allows the network to learn

shadow transients, improving performance. (c) Finally, usin g the predicted 2-bounce ToF and shadows, PlatoNeRF can be trained for 3D reconstruction.

Xy — X, is referred to as 2-bounce light. The presence, pathlength,
and bounce order (i.e., 1-, 2-, or 3-bounce) of multi-bounce light is
indicative of the geometry and materials present in a scene.

Depth. A key benefit of multi-bounce light is that a scene point
doesn’t have to be directly illuminated to infer its properties [Henley
et al. 2022; Klinghoffer et al. 2024]. Consider the illuminated scene
point x; and non-illuminated scene point x; shown in Fig. 2a. The
pathlength of the 1-bounce light can be used to infer the 3D position
of x; using conventional time-of-flight techniques [Charbon 2014].
Once the location of x; is recovered, the location of x, can be com-
puted. The light travels a distance of d; + d3 along the path x; —
Xz — X.. This distance constrains the possible locations for x; to be
on the surface of an ellipsoid, with foci at x; and x, and major axis
length d; +d,. We also know that x, must lie along the pixel viewing
direction. Taken together, these two constraints uniquely determine
the location of x;,. In this way, 2-bounce light can provide a physical
cue for depth even if the scene point isn’t directly illuminated.

Occlusions. Multi-bounce light can also probe parts of the scene
that aren’t directly visible to the camera. Consider the example in
Fig. 2b, where a bunny is behind an obstacle and therefore out-
side the camera’s line of sight. Here, the presence or absence of
two-bounce light measured at x; is an indication of the presence
or absence of an object behind the occluder. If 2-bounce light is
absent at x; (i.e., Xz is in shadow), then an object lies along the ray
connecting x; and x;. By analyzing the two-bounce intensities (i.e.,
shadows) along the entire surface on the right wall, the shape of
the occluded object can be inferred [Henley et al. 2020].

Specular Surfaces. A useful cue to identify specular surfaces is that
light returning to the sensor from the specular surface will always
arrive after (i.e., have a longer pathlength than) light returning to the
sensor from a diffuse surface. For example, consider the case where
the virtual source at x; is specular, as shown in Fig. 2c. In this case,
2-bounce and 3-bounce light will be observed. The 2-bounce light
will travel along the path x; — x; — X, — X,, and corresponds
to light returning from the diffuse surface. The observed 3-bounce
light will travel along the path x; — x; — x; — X; — X, due
to the geometry of specular geometry, and corresponds to light
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returning from the specular surface. The three-bounce pathlength
will be longer than the two-bounce pathlength due to the triangle
inequality theorem. A similar argument can be made for the case that
x; is diffuse and x; is specular, in which case 1-bounce light would
be observed from the diffuse surface and 2-bounce light would be
observed from the specular surface. The resulting property provides
a natural cue for detecting the presence of mirrors in a scene.

3.2 ToF-Based Multi-Bounce Path Separation

ToF cameras, such as lidars, can measure the presence and path-
length of multi-bounce light, and separate different light bounces at
a pixel due to their high timing precision (picosecond scale). These
lidars are now widely available on consumer devices, making them
a promising sensing modality for occlusion-aware 3D.

Single-Photon Lidar. A single-photon lidar system consists of a
pulsed illumination source and a 2D SPAD array. The SPAD array
consists of ny X ny pixels, and each pixel captures a temporal his-
togram of n; bins. The kth bin of the histogram contains the number
of detected photons in the time interval [kA, (k + 1)A], where A is
the temporal bin width of the sensor. The resulting SPAD measure-
ment i € R™*"*™ js a 3D data cube. There is also a ny, X ny, laser
spot illumination grid within the field of view of the camera, where
ny, < ny and ny, < ny. Prior works have shown that 3D geometry
and specular surfaces can be recovered from i when each laser spot
is illuminated sequentially [Henley et al. 2022, 2023].

Multiplexed Illumination. In practice, single-photon lidars found
on consumer devices typically do not illuminate one laser source
at a time: they emit all laser spots simultaneously as shown in
Fig. 2d. This multiplexed illumination produces an ambiguous signal
that integrates the contributions of all laser spots into a single
measurement. To recover scene properties, as discussed in Sec. 3.1,
we must “unmix” the signal contributions from each light source.

Practical Challenges. Demultiplexing the contributions of each
virtual source is challenging because many of the multi-bounce
paths will produce similar pathlengths, making inversion highly
ill-posed. Analytical methods for demultiplexing based on linear
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Fig. 4. Shadow Transients. We leverage the idea of shadow transients to
improve network training for shadow demultiplexing. The key idea is to
estimate the light that never reached the sensor due to the object casting a
shadow. In the top row, there’s no object, so the shadow transient is empty.
In the bottom row, two of the three light paths are blocked, so only one peak
shows up in the measurement. The shadow transient, on the other hand,
measures the two light sources that were blocked by the occluded object. In
practice, the calibrated capture is estimated from the data, not measured.
As a result, the calibrated capture is input to the network with the measured
histogram to prevent errors due to inaccurate shadow transient estimation.

models [Somasundaram et al. 2023] and heuristic algorithms [Hen-
ley et al. 2023; Lin et al. 2024] are based on simplifications of the
underlying light transport that do not generalize to natural scenes.
Our key insight is to use a data-driven approach that can learn
features directly from the physically-constrained, but difficult to
model, cues present in transient measurements.

4 Data-Driven Demultiplexing from Two-Bounce Lidar

The key challenge that we must solve to leverage multi-bounce
light transport in single-photon lidar is demultiplexing illumina-
tion. Each laser spot will result in a complex mixture of shadows,
specular reflections, and multi-bounce reflections. The presence of
multiple laser spots during illumination will further complicate the
light transport during capture. The demultiplexing problem entails
determining the light transport caused by each individual laser spot.

In practice, directly reconstructing the per-laser-spot transient
is challenging. Instead, we break the problem into several substeps
based on the intuitions in Sec. 3.1. First, we predict the depth of
the visible scene using a neural network (Sec. 4.1). From predicted
depth, we estimate separate 2-bounce ToF for each laser spot by
tracing the distances x; — X; — X,, — X, for all laser spots x;
and scene points x,, ,. For this step, we assume x; is known from 1-
bounce light. Second, we combine the predicted 2-bounce ToF with
the multiplexed measurement to estimate the individual shadows
caused by each laser spot (Sec. 4.1). Finally, we combine the 2-bounce
ToF and shadows to reconstruct the 3D scene. Demultiplexing is
performed in a data-driven manner, and final reconstruction is per-
formed via neural rendering. The pipeline overview is in Fig. 3 and
implementation details, such as architecture, are in the supplement.

4.1 Demultiplexing Two-Bounce Time-of-Flight

The 2-bounce ToF of light from individual laser spots is useful
for obtaining the visible scene geometry. Predicting the ToF of
each laser spot individually, however, is challenging due to the
high dimensionality of the output data structure (ny X ny X ny ny,).
Instead, we use depth estimation as a proxy task. The depth is

a lower-dimensional quantity (nx X ny) and can subsequently be
used to compute the 2-bounce ToF for each laser spot. We train
an encoder-decoder to directly learn depth from i in a supervised
fashion. The loss for the depth network consists of a data fidelity
and an edge-aware smoothness regularization term:

—Edepth = Ldata + Lsmooth- (l)

Following prior work in depth estimation [Godard et al. 2017, 2019],
the data fidelity term consists of a weighted combination of SSIM
[Wang et al. 2004] and an L1 loss

Laata = (1= SSIM(d, d)) + (1 - a)|d - d|s, )

where d is the ground-truth depth, dis the predicted depth, and e isa
weight hyperparameter. We set #=0.15 as in past work [Godard et al.
2017]. We also find that an edge-aware smoothness loss provides a
slight improvement in accuracy. This loss encourages the predicted
depth to be smooth without blurring edges [Godard et al. 2017]. We
use the time-integrated transient measurement I, , =3, i(u, 0, t) to
obtain an estimate of the edges because we don’t have access to an
RGB image. The resulting loss is

Lsmooth = J%v Z |adiu,v|e_|HXIu’v‘ + |aydAu,v|e_|ayIu’U‘a (3)
u,0

where d,, , = d(u,v), o and dy are the gradients of the depth and
intensity images, and f is a hyperparameter which we set to 1073.
From the predicted depth, we compute the 2-bounce time-of-flight
for each illumination spot, assuming no occlusions
|Xi - Xl| + |Xu,v - xi| + |Xu,v - Xc|

taB (X, Xuy03 X1, Xe) = . ., @

where x; € R? is the location of the ith virtual source (known from
1-bounce) and x,,, € R? is the location of the scene point imaged
by pixel (u,v), which can be computed via depth unprojection.

4.2 Demultiplexing Shadows

We use the shadows cast by the hidden objects from each illumina-
tion spot as the cue for occlusions. Therefore, we aim to recover a
set of binary shadow masks {s, ..., Sy m, }, where s; € R"™*", for
each illumination spot from the multiplexed measurement i.

We find that directly training a model to learn ny nj, shadow
masks from the multiplexed measurements, similar to the approach
in Sec. 4.1, does not work well. Conditioning the input on the laser
spot index similarly does not work well. One possible explanation
for poor performance with this approach is due to the inconsistency
between the network input and output. The input multiplexed mea-
surements measures the net amount of light arriving to the sensor
from all illumination spots. The output shadow masks, on the other
hand, predicts the absence of light from each illumination spot.

To handle this misalighment, we modify our input based on
the concept of shadow transients [Somasundaram et al. 2023]. The
shadow transient ishadow Was used in prior work to linearize the
forward model for 2-bounce occluded imaging [Somasundaram
et al. 2023], and helps align the network input and output in our
case. Shadow transients measure the multi-bounce light that doesn’t
reach the sensor due to obstructions from the occluded objects. The
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Lidar (25) Lidar (4) Example Shadow Example Shadow Example Shadow

Lidar Transient Frames (over time)

Fig. 5. Proposed Dataset. Samples from our simulated dataset of multi-bounce transients for ~100k scenes. Our dataset also contains RGB, depth, normals,
and segmentation maps for each scene. Transients are simulated with varying amounts of multiplexed illumination — shown as the intensity maps. Binary
shadow maps are provided for each illumination point. The last row shows frames of the simulated lidar transient for an example scene.

shadow transient is ishadow = icalib — i, Where icalib is a calibrated cap-
ture. This calibrated capture is performed by removing all occluded
objects in a scene (leaving only objects that are directly visible to the
camera), then capturing the transients, as shown in Fig. 4. Rather
than removing all occluded objects, icaiib can be estimated as

Tx) yy

et (1,0,8) = D Aiw0) - (¢t — bap(Xi Xuoi X1 X)), (5)

i=1

where A; (u,v) is the intensity of two-bounce light returning to pixel
(u,v) from virtual source i and § is the Dirac delta. We estimate
fealib using the predicted two-bounce ToF from Sec. 4.1. However,
Aj; is unknown, resulting in inaccurate estimates of the shadow
transients when subtracting i from icalib- While past work required
hyperparameter tuning for A;, we instead set A; = 1 and input both
i and icayp to the network. We find that concatenating icalib to the
input i significantly improves predicted shadow mask quality. We
use a binary cross entropy loss to train the network.

4.3 Single-Shot 3D Reconstruction

We use the predicted 2-bounce ToF from Sec. 4.1 and the predicted
shadows from Sec. 4.2 to train PlatoNeRF [Klinghoffer et al. 2024],
a neural reconstruction model to learn 3D geometry. PlatoNeRF
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requires a separate 2-bounce ToF map and shadow mask for each
laser spot. By using the output of our SB3D, PlatoNeRF can be
trained without modification, yielding the ability to render depth
from extreme novel views that reveal occluded geometry. Because
the contributions from all laser spots were captured simultaneously
through multiplexed illumination, SB3D enables single-shot capture
of the light transport needed for 3D reconstruction. Please refer to
the supplement for a comprehensive review of PlatoNeRF.

4.4 Single-Photon Lidar Feature Generalization

We take inspiration from existing work in represention learning for
RGB images [Kolesnikov et al. 2019; Tian et al. 2020] and apply it
to the context of single-photon lidar. We observe that the features
learned from demultiplexing ToF in Sec. 4.1 can also be used to
perform other tasks, such as specular surface segmentation. To do so,
we freeze the pre-trained encoder and train a randomly initialized
decoder to predict binary segmentation masks from the learned
features. The specular segmentation decoder is supervised with
ground-truth segmentation masks and a binary cross-entropy loss.

5 Shoot-Bounce-3D Transient Dataset

One of our contributions is a large-scale dataset of simulated lidar
transients (Fig. 5), built on top of the Aria Synthetic Environments
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Fig. 6. Demultiplexing Results. We show qualitative results for demul-
tiplexing both time of flight (ToF) and shadows. Each column denotes a
different illumination source — our method extracts the two-bounce ToF and

shadow maps for each from the multiplexed lidar measurement. The last row
shows frames from the predicted “light in flight” video (video provided in
the supplement), which is rendered by combining the predicted two-bounce
ToF and shadows into a transient measurement, allowing visualization of
two-bounce light propagation per illumination point.

(ASE) dataset [Avetisyan et al. 2024]. While there are many point-
cloud lidar datasets, only limited single-photon lidar datasets ex-
ist. Our dataset contains transients capturing multi-bounce light
transport (1st, 2nd, 3rd, etc bounces) that can be exploited for a
diverse range of tasks. To the best of our knowledge, this is the first
large-scale transient dataset, with past datasets containing ~5,000
simulated transients [Gutierrez-Barragan et al. 2021]. We render
one 256X256 transient at 128 ps temporal resolution for each of
the 97,432 ASE scenes (assembled from ~8,000 unique objects) we
used. These ASE scenes were procedurally created with SceneScript
[Avetisyan et al. 2024], which was shown to produce scene geome-
try sufficiently realistic for real-world generalization. Renderings
include single-photon lidar (4, 25, and 100 illumination points), RGB,
depth, normals, specular segmentation, instance segmentation, and
binary shadow maps. In addition, data is rendered at the same poses
as in the ASE dataset, allowing both datasets to be used in conjunc-
tion. We leverage the lidar transients, ground-truth depth, specular
segmentation masks, and shadow masks in our work. More details
are available in the supplement.

6 Experiments

We present simulated results for demultiplexing, depth estimation,
specular segmentation, and occlusion-aware 3D using data contain-
ing 25 illumination points. We use ~87k samples for training and 6k
for test metrics. We end with proof-of-concept real-world results.

6.1 Demultiplexing Results

First, we investigate the ability of our model to decompose two-
bounce light into separated two-bounce ToF and shadows per illu-
mination point. Qualitative results are shown in Fig. 6 for (a) de-
multiplexing ToF, (b) demultiplexing shadows, and (c) re-rendering

Table 1. Qualitative Results. We report metrics for each task. For depth
and specular segmentation, metrics are computed over 6k test samples. For
3D reconstruction, metrics are computed for predicted multi-view depth,
averaged over four scenes (shown in Fig. 7) with 80 novel test views each.

(a) Depth Estimation
Approach MAE |  F1Boundary T
Bounce Flash Lidar 0.4922 0.0138
CompletionFormer 0.4394 0.0066
Depth Anything V2 0.1640 0.1999
Depth Pro 0.1089 0.2930
Shoot-Bounce-3D  0.0228 0.6238

(b) Specular Segmentation

Approach Pixel MAE | IoU (%) T
EBLNet 0.0117 81.21
Shoot-Bounce-3D 0.0010 86.52

(c) Occlusion-Aware 3D Reconstruction

Approach MAE |  F1Boundary T
ZeroNVS 0.5619 0.0090
Shoot-Bounce-3D  0.0983 0.2725
PlatoNeRF Oracle 0.0950 0.3317

two-bounce transients, which can be visualized as “light in flight”
videos [Velten et al. 2013]. The transient video for the ith laser spot
can be rendered by applying the summand in Eq. (5) and setting
A;(u,v) =s;(u,0). The last result enables visualization of light prop-
agation per illumination point, as shown in the supp. video. The
mean absolute test error for two-bounce pathlength was 0.2736 m.
While correlated to depth error, this error is higher due to the longer
paths of two-bounce light. The pixel mean absolute error (MAE) and
IoU for predicted shadow maps was 0.0214 and 95.3%, respectively.

6.2 Depth Results

Our method is able to predict accurate dense depth from a single
image. While dense depth can also be recovered by using a lidar
with diffuse illumination and dense pixel array, existing consumer
devices such as the iPhone use point illumination [4sense 2021;
Allain 2022], which results in sparse depth but better range. Our
method, which also uses point illumination, also recovers dense
depth due to its use of both one-bounce and two-bounce paths.

Baselines. We compare to a physics-based lidar approach, a learned
RGB/lidar fusion approach, and an RGB depth foundation model:

1. Bounce-Flash (BF) Lidar [Henley et al. 2022] uses geometric
constraints to estimate depth from two-bounce lidar. Because BF
lidar assumes scanned illumination, we adapt it to the multiplexed
setting by using it to compute depth candidates for all (two-bounce
peak, illumination point) pairs, via peak finding. Intuitively, if a
scene point is not in shadow for two illumination points, then BF
Lidar will yield approximately the same depth for both. We compute
the mode of the discretized depth candidates to compute depth.

2. CompletionFormer (CF) [Zhang et al. 2023] recovers dense
depth from monocular RGB and sparse lidar. We use RGB images
rendered at the same view as our lidar transients and depth from our
sparse illumination points (computed from first bounce) as input.

3 & 4. Depth Anything V2 & Depth Pro [Bochkovskii et al. 2024;
Yang et al. 2024b] are RGB foundation models for monocular depth,
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Fig. 7. Qualitative Results. We show qualitative results for the tasks of (a) depth estimation, (b) specular surface segmentation, and (c) occlusion-aware 3D
reconstruction — both for our method and the best baseline per task (as well as PlatoNeRF oracle for 3D reconstruction). Our method consistently generates
interpretable and accurate results across each of the scenes. For 3D reconstruction, we show novel views that lie in regions occluded from the training view,
demonstrating our method’s ability to predict demultiplexed shadows that enable inference of hidden geometry.

trained on large sets of real and simulated RGB. Although both mod-
els can compute metric depth, we found this inaccurate. We rescaled
predictions via a least squares regression on 25 anchor points, ac-
quired from the one-bounce returns in our lidar measurements.

Metrics. We compute metric depth mean absolute error and bound-
ary F1 (a scale-invariant metric defined by Bochkovskii et al. [2024]).

Results. We find that our method significantly outperforms the
baselines. Quantitative results are provided in Tab. 1a and qualitative
results and error maps for our method and Depth Pro are shown
in Fig. 7. Depth Pro produces qualitatively similar depths as the
ground truth, but struggles to preserve scale, even after rescaling
with anchor points. In addition, we notice higher depth error around
edges with Depth Pro compared to our method. Because BF Lidar
has no learnable mechanism for denoising or infilling, it produces
noisy depth maps and is unable to resolve depth for shadowed pixels.
CF struggles when provided depth from only 25 points. Even when
100 points are provided, it still achieves only 0.149 m MAE.

6.3 Specular Surface Segmentation Results

Baselines. We compare our method for specular segmentation to
EBLNet [He et al. 2021], which learns to segment glass and mirrors
from an RGB image. For fair comparison, we retrain EBLNet on our
dataset. We considered lidar comparisons, but found that existing
methods either do not focus on multiplexed illumination [Henley
et al. 2023] or use a different hardware setup [Lin et al. 2024].

Metrics. Specular surface segmentation is a binary segmentation
task where values of one indicate a specular surface and values
of zero indicate a diffuse surface. We report pixel mean absolute
error (X, , |Su,0 — Su,0|, where s and § are ground-truth and predicted
segmentation values per pixel), and intersection over union (IoU).
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Results. We find that our method is able to detect mirrors with high
accuracy, outperforming EBLNet. We posit the increase in perfor-
mance is due the availability of physical cues correlated to specular
surfaces (Fig. 2c), whereas, in RGB images, detecting specular sur-
faces is inherently ambiguous (a specular surface and a “portal”
often look identical). While our work focuses on two-bounce sig-
nals, since we use the full transient as input to our model, it may also
use three-bounce signals. We ablate this further in the supplement.

6.4 3D Reconstruction Results

Finally, we evaluate SB3D’s 3D reconstruction quality. Recall from
Fig. 3 that 3D reconstruction is done per-scene by supervising Pla-
toNeRF with SB3D’s predicted two-bounce ToF and shadows.

Baselines. We compare our method to the following approaches.
We also attempted a comparison with Somasundaram et al. [2023],
but the method assumes that a calibrated capture i, is available,
as described in Sec. 4.2, which is not the case in practice.

1. ZeroNVS [Sargent et al. 2024] trains a NeRF from a single RGB
image via score distillation sampling of a diffusion model.

2. PlatoNeRF Oracle [Klinghoffer et al. 2024]: Our method is built
atop PlatoNeRF - a recent method for 3D reconstruction from two-
bounce lidar. Therefore, we train an “oracle” PlatoNeRF model from
ground truth two-bounce ToF and shadows for each scene to disen-
tangle performance of our method and performance of PlatoNeRF.

Metrics. We compute MAE and boundary F1 on multi-view depth
rendered from NeRF as a proxy for 3D reconstruction.

Results. Qualitative results for our method and ZeroNVS are shown
in Fig. 7c. We find that our method is able to accurately reconstruct
not only visible regions - but also occluded regions, yielding inter-
pretable and detailed geometry. ZeroNVS is able to discern coarse
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Fig. 8. Real-World Results. We provide proof-of-concept real-world results on a new dataset that we capture with multiplexed illumination (16 laser spots).
We compare our method to PlatoNeRF for depth, shadows, and 3D depth views. Since our goal is single-shot 3D, we restrict PlatoNeRF to a single capture,
which, since it is unable to handle multiplexing, means it is trained with 1 illumination point. Our method, on the other hand, learns to demultiplex 16
illumination points, leading to better performance, especially in specular regions. A comparison to PlatoNeRF with more captures is provided in the supplement.

structure — and in some cases, such as the last scene, carve out
empty space in occluded regions, but fails to recover detailed ge-
ometry. Lack of detailed geometry may be because of geometric
inconsistencies that emerge from training with a diffusion model.
In addition, ZeroNVS relies entirely on hallucination in regions that
are fully occluded, whereas SB3D relies on a physically meaningful
quantity — demultiplexed shadows. Although ZeroNVS struggles
to perform accurate novel view synthesis in the extreme views and
occluded areas emphasized in this work, we note that it performs
better with small view changes without occlusion, as shown in Fig. 9,
yielding better, albeit still less accurate depth. Figure 9 also high-
lights the importance of understanding specular surfaces during 3D
reconstruction, which our method is able to do due to earlier steps
implicitly learning about them when demultiplexing.

6.5 Real-World Results

We provide an overview of our real-world results and refer the
reader to the supplement for more details and discussion.

Dataset. We collect a real-world dataset by scanning a single-pixel
SPAD (MPD PDM Series) over the field of view of the scene (con-
taining a cube and cylinder inside a room with a mirror on the wall)
using a two-axis scanning galvanometer (ThorLabs GVS412). This
process is repeated for 16 illumination points and the transients
are summed to create a multiplexed measurement for testing. The
real-world data is 256 X 256 with a temporal resolution of 32 ps.

Results. To validate our method, we retrain our models with a sim-
ulated dataset of 10k scenes containing a cube, cylinder, and mirror
randomly placed inside a room of varying scale. During training,
we add Poisson noise and Gaussian timing jitter to the transients.
We then test the models on the real-world dataset and find that
they are able to recover accurate depth and shadow masks, enabling
3D reconstruction and outperforming PlatoNeRF in the single-shot
setting (Fig. 8). Our reconstruction is created by manually selecting
the 4 best shadow masks, since, as shown in the supplement, some
predictions contain artifacts. These artifacts can be mitigated in the
future by improving SNR of test data, incorporating more realistic
noise in simulated training data, and introducing real-world data

Novel View

ZeroNVS RGB ZeroNVS Surface Normals

ZeroNVS Depth Our Depth

Fig. 9. Portals in Mirrors. RGB-based methods - such as ZeroNVS (shown
above) — are prone to hallucinating “portals” inside mirrors due to the lack
of cues to distinguish the mirror from a physical space. By leveraging multi-
bounce transients, our method can handle specular surfaces, such as mirrors,
enabling accurate 3D reconstruction even in the presence of mirrors.

in training. Our depth error is 0.028 m and boundary F1 is 0.556.
We find that as the number of captures used to train PlatoNeRF
increases, so does its performance, but SB3D remains competitive,
as shown in the supplement. These results demonstrate that the
proposed method can be successfully extended to real-world data.

6.6 Ablations

We find our method continues to work when retrained on separate
datasets with 4 or 100 illumination points (Fig. 11). We also ablate
adding realistic pulse shapes, noise, and timing jitter on a simplified
dataset in Fig. 10. More details on these ablations, as well as addi-
tional ablations, including on shadow estimation, training on 1- and
2-bounce light only, amount of training data, out-of-distribution
geometry, and temporal resolution, are in the supplement.

7 Conclusion

We present a method for single-shot estimation of depth and 3D
scene geometry in the presence of specularities using single-photon
lidars with multiplexed illumination. At the heart of our method is
the first large-scale simulated dataset of ~100k lidar transients, which
enables our learned technique for demultplexing ToF and shadows
from a single lidar measurement. Not only does demultiplexing
enable 3D reconstruction, but we also find that the learned features
could generalize to other tasks, such as specular segmentation.
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Fig. 10. Pulse Shape, Noise, & Timing Jitter. To demonstrate that the
ideas introduced in this work can generalize to realistic pulse shapes, noise,
and timing jitter, we (a) convolve our simulations with real-world sensor
pulses, (b) add Poisson noise to the histogram intensities (such that 2-bounce
peak photon counts range from 10 to 400), and (c) add Gaussian timing jitter
to the histogram peaks (50 ps full width at half max). Accurate depth and
shadow estimation show robustness to some practical challenges with lidar.
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Fig. 11. Ablation: Number of Illumination Points. We show the trade-off
in performance as the number of illumination points is varied from 4 to 25
to 100. While depth and specular surface estimation improve with more
illumination points — despite increased ambiguities from multiplexing -
shadow mapping becomes less accurate. Therefore, a Pareto optimum exists
that balances the accuracy of all three tasks.

Limitations. Due to our pipeline design, errors from ToF separation
propagate to shadow separation. In addition, this work does not
consider practical challenges that arise on consumer SPADs, such
as cross talk, hot pixels, dead time, and blooming. Our work is a
step towards enabling single-shot 3D on these sensors.

Future Work. Our dataset and method open opportunities for
future work in single-photon lidar foundation models and fusion
with RGB images. In addition, future work is needed to automate
the selection of top shadow mask predictions and to reduce the
propagation of errors, potentially through end-to-end methods.
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