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A Ablations
We include ablations to better understand the impact of: (1) the
proposed use of shadow transients for shadow mapping, (2) number
of illumination points, (3) single-photon lidar’s temporal dimension,
(4) light that has bounced more than two times, (5) modeling pulse
shape, noise, and timing jitter, (6) amount of training data, and (7)
out-of-distribution geometry at test time. We include quantitative
results for these ablations in text below and qualitative results in
Fig. 12, Fig. 13, and Fig. 14.

A.1 Shadow Mapping Approaches
Our approach draws on the idea of shadow transients to map lidar
measurements to binary shadow maps for each illumination source.
Rather than only using the multiplexed measurement as input, we
also provide predicted two-bounce ToF. To understand the bene!t of
this approach, we compare it to the naive approach of using only the
multiplexed input with supervised learning. Since there is no cue for
which shadow to generate given a multiplexed measurement, we try
two approaches: (1) predict shadows for all illumination points in a
forward pass, (2) condition on illumination point and predict only
the corresponding shadow in a forward pass. We !nd that the model
is unable to learn accurate shadows with either of these approaches.
While our proposed method – which uses predicted two-bounce
ToF as an additional input – yields 0.0186 MAE and 0.959 IoU (Fig.
12, row 6), (1) yields 0.0984 and 0.788, respectively, and (2) yields
0.0896 and 0.799, respectively. Qualitative results for (1) and (2) are
shown in Fig. 12, rows 3 and 4, respectively. We also tried explicitly
computing the shadow transients by taking the absolute di"erence
of the predicted two-bounce ToF transient and measured transient,
and using this as input, which, while still accurate, results in slightly
worse performance (0.0231 MAE, 0.950 IoU), as shown in Fig. 12, row
5. These results indicate that using shadow transient information
– either implicitly or explicitly – is critical for accurate shadow
mapping from multiplexed lidar measurements.

A.2 Number of Illumination Points
We vary the number of illumination points – using 4, 25, and 100 –
and study its impact on depth estimation, specular surface segmenta-
tion, and shadow mapping (a proxy for occluded 3D reconstruction;
i.e., inaccurate shadows lead to poor reconstruction). Intuitively,
more illumination points increases ambiguity – as there are more
unknown correspondences of peaks to illumination points. However,
we !nd that this only reduces performance for shadow mapping –
more illumination points results in higher performance when es-
timating either depth or specular surfaces. Results are shown in
Fig. 11 of the main text. As more illumination points are added,
there is more redundancy in depth information – since each illu-
mination points provides a depth cue for all points light re#ects to.
Similarly, more illumination points increases the odds of a specular
cue becoming available – since specular cues depend on light from
a specular surface eventually being re#ected back to the sensor.
However, increasing the number of illumination points presents a
serious challenge for the model to separate shadows, resulting lower
performance. Thus, we hypothesize there is a pareto optimum that
exists for number of illumination points, which results in higher

depth, specular surface, and shadow accuracy. In our work, this
optimum occurs at 25 illumination points. More work is needed to
understand if the trend of depth improving with more illumination
points continues with signi!cantly more illumination points – on
one hand, these additional illumination points provide redundancy
in depth information, but, on the other, they increase the peak to
illumination point correspondence ambiguities.

A.3 Intensity Only Measurements
One of the primary hypotheses of this work is that the temporal
dimension of transient measurements contains information that
can enable new advancements in 3D computer vision. Thus, for
each of the tasks that we perform – estimation of depth, specular
surfaces, and occluded geometry – we also conduct a baseline using
an intensity image from a single-photon lidar. The intensity image
is simply the sum of the transient along the temporal dimension.
As expected, using the intensity image for training and inference
on each task results in signi!cantly worse performance than our
method, which leverages the full information in the 3D transient.
Using the intensity image results in 0.174 m mean absolute error for
depth estimation, 0.703 IoU for specular segmentation, and 0.700 IoU
for shadow mapping. While a signi!cant drop in performance, inter-
estingly, the intensity image still contains relevant cues for modest
performance on each task, though we found the resulting shadow
maps are not su$ciently accurate to perform 3D reconstruction.

A.4 Two-Bounce Only Measurements
We also study the impact of training on transients that only contain
!rst and second bounce information to understand which signals
the model has learned to exploit. We do this by re-rendering the
transient dataset in MitsubaToF and setting 𝐿𝑀𝑁_𝑂𝑃𝑄𝑅𝑆 to three
(whereas the main dataset contains all bounces). We re-train our
models for each task, allowing us to understand the importance of
three or more bounces of light based on the change in performance
per task. Depth MAE increases from 0.0228 to 0.0255m (ω0.0027m),
shadow mapping IoU increases from 0.954 to 0.964 (ω0.01), and spec-
ular surface IoU drops from 0.865 to 0.767 (-ω0.098). Thus, while
three bounce has a minimal impact on depth and shadows, it has
a signi!cant impact on specular surface segmentation. This result
matches our intuition that three-bounce signals can contain infor-
mation about specular surfaces. While two-bounce signals may
indicate a specular surface based on the presence of an extra mea-
sured peak at scene points that receive light re#ected directly o" a
specular surface, three-bounce signals are empirically more help-
ful. In particular, we posit that the model has not only learned to
exploit di"use-specular-di"use light paths, as done in past work,
but also di"use-di"use-specular light paths, which may be a fruitful
direction to investigate in future work. This hypothesis is based
on the di"use-di"use-specular signal that is visually evident when
watching the light-in-#ight transient videos.

A.5 Noise and Timing Ji!er
Since our method is trained with simulated measurements, we ab-
late its ability to work when trained on measurements with realistic
pulse shapes, noise, and timing jitter. As done by Chen et al. [2020],
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Fig. 12. Shadow Mapping Approaches Ablation. We compare di"erent methods for predicting shadow masks from multiplexed lidar transients. All results
are for measurements with 25 laser spots. We compare: supervised learning (transient→ 25 shadows), supervised learning conditioned on laser spot index
((transient, index)→ shadow), shadow transients (abs(2-Bounce ToF transient – measured transient)→ shadow), and ours ((2-Bounce ToF transient, measured
transient)→ shadow). Results indicate that the use of shadow transients – whether explicit or implicit (ours) significantly improves results. Providing both the
predicted 2-bounce ToF transient and measured transient as input to the network, rather than explicitly computing the shadow transient, slightly improves
detail and performance, as shown by the regions in the red boxes.

Fig. 13. Intensity Only Ablation. We compare depth and shadow estima-
tion when using intensity images from the SPAD (obtained by summing
along the temporal dimension) vs the full transient (ours). Using the full
transient improves both depth and shadow results.

we follow the protocol established in Hernandez et al. [2017] for
modeling realistic SPAD measurements. First, we convolve the ren-
dered histograms with a pulse measured with a real-world sensor
(MPD PDM Series). Next, we add Poisson noise and Gaussian timing
jitter to the histograms. We sample the rate from a uniform distri-
bution, leading to 2-bounce peak photon counts ranging from 10

Fig. 14. Two-Bounce Only Ablation. We compare specular segmentation
for models trained with transients rendered with only 1- and 2-Bounce
peaks vs all peaks (ours). We randomly set pictures to be specular and find
that only using 2-bounce information is not su"icient – thus, we posit this
model also relies on 3-bounce information.

to 400. We add 50 ps timing jitter (FWHM), which corresponds to
6.25 bins at 8 ps resolution. For this ablation, we use a small dataset
containing geometric primitives to ease training time. The dataset
consists of 10k training samples. Each scene also contains a mirror.
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Fig. 15. Ablation: Training Scale. Given the scale of the proposed SB3D
Dataset, we ablate the impact of training data scale on performance, focus-
ing on depth accuracy. We find that as the amount of training data increases
from 20k to 90k samples, the depth error consistency is reduced. Interest-
ingly, the depth error reduces below the limit set by the temporal resolution
of the sensor – meaning the model has learned precise correlations based on
shape and appearance, rather than just relying on the timing information.

We demonstrate both accurate depth estimation (which can then be
used to estimate two-bounce ToF) and shadow mapping using our
method trained on this dataset. While our method is able to work
in these conditions, we found that the 2D U-Net model was signif-
icantly less accurate than the “2.5D” U-Net alternative proposed
in Appendix B. While the “2.5D” U-Net was not used in the main
experiments due to higher training time, our use of a smaller and
simpler dataset in this ablation, allowed us to use it. We posit that
the 3D encoder enables the model to learn more robust temporal
features, allowing it to generalize better under larger amounts of
noise.

A.6 Impact of Training Scale
One of the contributions of this work is a large-scale simulated
transient dataset. To ablate the impact of its scale on learning from
multi-bounce signals, we vary the amount of training data used
for our depth model and study the impact on performance. While
past work in deep learning has extensively shown that data scale is
correlated with performance, we use this ablation to con!rm that
intuition in the case of single-photon lidar data. We !nd that as we
increase the amount of training data from 20k to 90k samples, depth
estimation accuracy continues to improve, as shown in Fig. 15 of
the main text.

A.7 Out-of-Distribution Generalization
We study the generalization capabilities of our model on out-of-
distribution geometry. To do this, we rendered a new test dataset of
multiplexed transients for 1,000 objects from Objaverse [Deitke et al.
2023] that don’t appear in our training dataset (animals, humans,
etc.). Each scene contains a cuboid roomwith an object placed on the
ground. We tested our depth and shadow estimation models on this
dataset. Depth MAE was 0.0201 m and shadow MAE and IoU were
0.0541 and 92.4% respectively, similar to previous in-distribution
results (Tab. 1). We computed depth error only on object pixels

(using an object mask), whereas shadow MAE/IoU were computed
over all pixels.

B Implementation Details & Architecture
Pre-Processing. Our method utilizes the raw multi-bounce lidar
measurement as input, which, in our work had a shape 256↑256↑637
in our main experiments and 256↑256↑375 in our real-world exper-
iments and noise ablation. We tried two methods for data normaliza-
tion for the depth model: (1) reducing dynamic range by taking the
log of each measurement followed by min-max normalization using
the max intensity found over the entire dataset, and (2) min-max
normalizing each histogram. While both were e"ective, we used
(2) since it resulted in slightly better performance. For the shadow
transient model, measured transients are min-max normalized and
concatenated with the histogrammed predicted two-bounce ToF.
For real-world data, the measurements were instead 256↑ 256↑ 375
due to the di"erences in scene scale and temporal resolution.

Architecture. Although the focus of our work is not on architec-
ture, we investigated the e$cacy of di"erent architectures for the
proposed tasks, including 2D U-Net [Ronneberger et al. 2015], “2.5D”
U-Net (3D encoder and 2D decoder with learned projections in each
skip connection), SwinIR [Liang et al. 2021], NLOST [Li et al. 2023],
and NLOSFeatureEmbeddings [Chen et al. 2020]. We found that 2D
U-Net and “2.5D” U-Net had the best performance – with 2D U-Net
training faster since larger batches could be !t on GPU. Thus, we
used a modi!ed 2D U-Net for all results. To accommodate the large
size of our input, we added an initial feature extraction convolution
to project 637 bins (or 375 for real-world data) to 128 channels before
proceeding to the six U-Net encoder and decoder blocks.

Training. In simulation-based experiments, we trained three mod-
els: a ToF demultiplexing model, a shadow demultiplexing model,
and a specular surface segmentation decoder (using the frozen ToF
demultiplexing features). All models were trained for 200 epochs.
The shadow model was trained with ground-truth two-bounce ToF
data for the !rst 100 epochs and then with the noisier predicted two-
bounce ToF data for the last 100 epochs. We found this curriculum
learning strategy to be most e"ective to maximize accuracy. While
the depth model and shadow model were both trained to generalize
over scenes, the neural reconstruction method [Klingho"er et al.
2024] was trained per scene.

Implementation. Our models are implemented in PyTorch [Paszke
et al. 2019] and each trained on 8 NVIDIA H100 GPUs for around
two days due to the size of the dataset used. We use the AdamW
optimizer [Loshchilov and Hutter 2019] with an initial learning rate
of 10↓2 and weight decay of 10↓3.

C Training / Eval / Test Splits for SB3D Dataset
We train our models using the proposed dataset described in Sec. 5.
We use 90% training split (87,688 samples), 3.9% validation split (3,744
samples), and 6.1% test split (6k samples). For 3D reconstruction,
we train PlatoNeRF per scene using the predicted two-bounce ToF
and shadows, as described in Sec. 4. In all experiments we assume
25 illumination points in a grid pattern, unless stated otherwise
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(i.e., ablations on number of illumination points, noise ablation, and
real-world experiments).

D SB3D Dataset Rendering Details
Meshes of indoor scenes from the Aria Synthetic Environments
(ASE) dataset are used in this work [Avetisyan et al. 2024], with
measurements rendered at the same poses as in the ASE dataset.
Scenes in the ASE dataset contain objects from the Amazon Berkeley
Objects dataset [Collins et al. 2022] placed via procedural generation
to create realistic indoor layouts. Objects are assembled to mimic
realistic indoor environments. These scenes were shown to be su$-
ciently realistic for real-world generalization of models trained on
rendered RGB in past work [Avetisyan et al. 2024]. Besides single-
photon lidar, all renders are created with Blender. Single-photon
lidar transients are created with the physically-based MitsubaToF
renderer [Pediredla et al. 2019b], which uses bidirectional path trac-
ing with ellipsoidal connections to increase sampling e$ciency.
Due to the computational complexity of rendering single-photon
lidar and the scale of the proposed dataset, rendering was paral-
lelized over 1,000 CPU machines over around one week. All data is
rendered at a resolution of 256↑256with a !eld of view of 90°. Multi-
bounce lidar measurements are rendered with a temporal resolution
of 128 picoseconds or ~0.0384meters. All bounces of light (1, 2, 3,
and more) are rendered. To reduce rendering time, time gating is
used when generating the transient data (all scenes have a minimum
depth of no less than 0.5 m and a maximum depth of no more than
4.5 m). To ensure all two-bounce paths are recorded, pathlengths
between 1 and 25.46meters are recorded, resulting in 637 bins per
transient histogram. We set 𝑇𝐿𝑀𝑁𝑂𝑃𝑄𝑅 to -1 in MitsubaToF, meaning
all bounces of light are rendered. Thus, the dataset can be used
in future work that explores additional bounces. For any specular
surface, we use the "roughconductor" BSDF in MitsubaToF and set
alpha to 0.01. As a result, the lidar transients have either di"use
or specular surfaces (but not a gradient). We acknowledge this is
a limitation of the dataset, as, in practice, many real-world objects
may exhibit material properties with partial di"use and specular
components, however, in our real-world proof-of-concept experi-
ments, we !nd this assumption is su$cient in demonstrating the
potential for real-world generalization. For accessibility, the dataset
is compressed to ~5 TB for release. We provide additional examples
from the proposed SB3D dataset in Fig. 19.
Although not used in this work, the proposed dataset contains

over 30 instance label categories that can be used in future work on
instance segmentation, including everyday objects, such as desks,
chairs, books, beds, pillows, weights, and many more.
Since assets from our dataset are rendered at the same pose as

the ASE dataset, our dataset can easily be used with any assets from
the ASE dataset in future work. Our dataset and all details on how
to use it will be published in our project webpage.

E PlatoNeRF Background
Our method leverages PlatoNeRF [Klingho"er et al. 2024], a recent
method for single-view 3D reconstruction from two-bounce tran-
sients. In contrast to our approach, PlatoNeRF assumes a laser is
scanned over the scene sequentially, capturing separate transients

Fig. 16. PlatoNeRF Performance with More Captures. While our
method outperforms PlatoNeRF in the single capture se!ing, we compare
to PlatoNeRF as more points are scanned and used in training. We find that,
as expected, PlatoNeRF accuracy increases as more captures (with di"erent
illumination points) are added. Shoot-Bounce-3D remains competitive –
higher performance is especially noticeable in specular regions, though
occluded regions have more floaters.

for each laser spot. Each transient is preprocessed into two-bounce
ToF and shadow masks, which are used to supervise the learned
densities via volume rendering.

PlatoNeRF is trained in two stages. First, depth from the lidar to
the scene is learned by tracing primary rays with volume rendering.
Since ground truth depth is not directly available, predicted depth
is used to compute two-bounce ToF based on known illumination
point and laser location (i.e. tracing the distance from the laser to
the illumination point, from the illumination point to the predicted
scene point location, and from the predicted scene point location
to the known sensor location). In the second stage, secondary rays
are also traced. Secondary rays originate at the end of primary
rays and go to each illumination point. Intuitively, the full path of
the secondary ray is only traveled if the measured point is not in
shadow, else an object occludes the light from reaching themeasured
point. Thus, the secondary rays’ transmittance values are supervised
with the binary shadow masks extracted from the raw transient
measurements.

Since PlatoNeRF uses two-bounce ToF and shadowmasks to learn
3D scene geometry, the proposed pipeline naturally integrates with
this approach for 3D reconstruction. Rather than computing these
values from many non-multiplexed measurements, we instead use
the values predicted by our models from multiplexed measurements,
enabling single-shot 3D reconstruction.

F Real-World Experiments
In this section, we elaborate on the details of our real-world dataset
and proof-of-concept results.

F.1 Model Training
For real-world validation, we retrain our models on a simulated
dataset of scenes with a randomly placed cube, cylinder, and mirror
in a room of varying scale. There are several reasons that motivate
our use of a new training dataset for our real-world experiments.
The original networks used (a) noiseless data, (b) scene scales too
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large for our galvo ranges and lab space (1–4 vs 0.4–1 m), (c) dif-
ferent camera settings (90° vs 45° FoV, 128 ps vs 32 ps bins), and (d)
25 illumination points (we used 16 to cut acquisition time). While
di"erences in scene scale can be partially mitigated by rescaling
our measurements, this process is approximate (e.g. the original
number of bins ↑ scene scale delta may not equal the target num-
ber of bins). Re-rendering the entire dataset to close these gaps
would have been computationally expensive. Instead, we rendered
a smaller dataset with the same scale, camera, and illumination as
real, and added noise. Using this dataset allowed us to validate that
transient demultiplexing is feasible under realistic signal and noise.
The simulated scene is illuminated at 16 points simultaneously –
these points are in a grid pattern. When rendering, we randomly
apply jitter to the camera origin and !eld of view for each scene.
Each transient is rendered at 8 ps resolution and every four adja-
cent bins are summed to reduce the temporal resolution to 32 ps
before training/inference. We choose 32 ps so that !ne details can
be resolved given the small scale of our scenes (the cylinder is one
inch wide). Rendering with higher temporal resolution allows pulse
shape and noise to be applied optionally before combining bins. The
training dataset contained 10k samples, with an additional 2.5k for
validation and 2.5k for test. We trained two sets of models – one
with noiseless data and one with added pulse shapes, noise, and
timing jitter (see Appendix A.5 for details).

F.2 Real-World Dataset
We capture a real-world dataset with scene geometry and sensor
intrinsics/extrinsics that lie in distribution with the training data
described above. We construct a room from di"use white poster
board and randomly place a foam cube and cylinder inside it, along
with a mirror on the back wall. We illuminate each laser spot one
at a time with a pulsed laser (Picoquant LDH-D Series) with 640
nm wavelength and a two-axis scanning galvonometer (Thorlabs
GVS412). For each laser spot, we then scan a single-pixel SPAD
(MPD PDM Series) over a 46° !eld of view using a second two-axis
scanning galvonometer. This procedure results in sixteen 256 ↑ 256
transients captured at 8 ps resolution. We sum adjacent bins in each
transient to reduce the temporal resolution to 32 ps and add the
sixteen transients together to create a multiplexed measurement.
The light-in-#ight video is shown in the supplementary webpage.
Ground truth depth is captured from 1-bounce light by converting
the setup shown in Fig. 8 to be confocal.

F.3 Results
Results are shown in Fig. 8. While we found our noiseless and noised
models were both able to estimate reasonable depth, recovered
shadows varied in quality, with some being highly accurate and
others containing more artifacts, as shown in Fig. 17. To !nd the best
shadows, we performed a grid search over model (noiseless, noised),
amount of noise to subtract, and maximum histogram intensity
(for clipping). We also tried applying a low-pass !lter to the data
and performing peak !nding to reconstruct histograms with Diracs,
but found that neither improved performance. We used the four
best shadows (via manual selection), along with the 2-bounce ToF,
predicted by our model to train PlatoNeRF for 3D reconstruction. In

Fig. 17. Shadow Prediction!ality.While our is able to produce shadows
su"icient for 3D reconstruction, some predicted shadows have significant
artifacts, as shown in the two examples on the right. Below our predicted
shadows we show shadow quality when using a match filtr on the non-
multiplexed measurement from the individual illumination point.

Fig. 18. Limitations in Generalizability.We test the generalizability of
our models by testing them on an existing real-world dataset (from Bounce
Flash Lidar [Henley et al. 2022]) with di"erent scene scale, geometry, and
spatial/temporal sensor resolution than seen in training. Ourmodels are able
to predict reasonable depth despite these di"erences. However, while some
structure is maintained in predicted shadows, there are noticeable artifacts,
especially in the region near the mannequin’s head. If we use ground truth
2-bounce ToF, along with raw transients, as input to our shadow model,
instead of predicted 2-bounce ToF, shadow quality improves significantly.
This improvement suggests that a limitation of our work is the propagation
of errors from the depth estimation model to the shadow model.

Fig. 8, we compare SB3D to PlatoNeRF trained when both are trained
with only a single capture. Since PlatoNeRF is unable to handle
multiplexed illumination, we instead train this PlatoNeRF model
with a single illumination point. As shown in Fig. 16, as we increase
the number of captures used to train PlatoNeRF, its performance
improves. SB3D outperforms PlatoNeRF in the single capture setting
and remains competitive with PlatoNeRF even when PlatoNeRF is
trained with 16 captures. Training PlatoNeRF with 16 captures (by
scanning a laser over di"erent illumination points) serves as an
upper bounce on 3D reconstruction. With 16 captures, PlatoNeRF
exhibits slightly fewer #oaters/artifacts in occluded regions than
SB3D, but SB3D exhibits better performance in areas with specular
objects due to its use of a data prior.

Limitations & Opportunities. Our real-world results demonstrate
feasibility that the ideas proposed in this work can extend to real-
world settings, In this section, we investigate generalizability and
limitations of our model.
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Fig. 19. SB3D Dataset (Extended). We provide additional examples from our proposed dataset. In total, the dataset contains 97,432 examples, each rendered
from a di"erent scene.

We test our models’ ability to generalize to another real-world
dataset, from BF Lidar [Henley et al. 2022]. This test is challenging
because the scene in this dataset has di"erent scale and geometry
(e.g. a mannequins head) than the scenes in our training dataset. In
addition, the multiplexed measurement from BF Lidar has di"erent
spatial and temporal resolution than our models were trained with.
Speci!cally, our models from Sec. F.1 were trained with 256 ↑ 256
spatial resolution and 32 ps temporal resolution, whereas the BF
Lidar data is 200 ↑ 200 spatial resolution with 128 ps temporal reso-
lution. In addition, the BF Lidar scene is illuminated at 16 random
points, rather than in a grid pattern. To account for this, we retrain
the models described in Sec. F.1 with random illumination points
for every training sample, testing whether our model can not only
generalize to a real-world measurement with di"erent geometry
and resolution, but also generalize to random illumination patterns.

To test our models on the BF Lidar dataset, we zero-pad the mea-
surements and rescale the detected two-bounce peaks bins based on
the di"erence in scene scale between training and test. Results are
shown in Fig. 18. Despite the signi!cant domain gaps, our model
is capable of predicting reasonable depth, albeit with artifacts. The
predicted shadows contain accurate regions, but also regions with
signi!cant artifacts. To understand the cause of these artifacts, we
tried using ground-truth 2-bounce ToF, rather than predictions, –
along with raw lidar transients – as input to our shadow estimation
model. This experiment resulted in signi!cant improvements in
shadow quality. This !nding suggests that the shadow models are
also able to generalize to di"erent geometries and sensor resolu-
tions if given accurate 2-bounce ToF, but errors in depth estimation
propagate and can signi!cantly impact the shadow model.
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Future work may explore di"erent types of noise to add to the
two-bounce ToF during training to improve robustness or ways to
unify the !rst two stages of our approach. Other improvements

may come from incorporating real-world data into training and
investigating other ways to mitigate the sim-to-real gap.
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